
Fast Sequence Combinators

Anna Bolotina

Programming Research Laboratory

Czech Technical University in Prague

ann-bolotina@yandex.ru

RacketFest 2020

1 / 12



Programming quiz

What is the sum of squares of primes up to 10000?

What is the product of squares of primes up to 10000?

What is the �rst square of a prime that ends in 1?

2 / 12



(define squares-of-primes-up-to-10000

(map sqr

(filter prime?

(range 0 10000))))

(for/sum ([(x) squares-of-primes-up-to-10000])

x)

(for/product ([(x) squares-of-primes-up-to-10000])

x)

(for/first ([(x) squares-of-primes-up-to-10000]

#:when (ends-in-1? x))

x)

3 / 12



(define squares-of-primes-up-to-10000

(sequence-map

sqr

(sequence-filter

prime?

(in-range 0 10000))))

(for/sum ([(x) squares-of-primes-up-to-10000])

x)

(for/product ([(x) squares-of-primes-up-to-10000])

x)

(for/first ([(x) squares-of-primes-up-to-10000]

#:when (ends-in-1? x))

x)

4 / 12



(for/sum ([(x) (in-range 0 10000)])

(if prime?

(sqr x)

0))

(for/or ([(x) (in-range 0 10000)])

(if (prime? x)

(let ([x* (sqr x)])

(if (ends-in-1? x*)

x*

#f ))

#f ))

5 / 12



(define-syntax-rule (squares-of-primes-up-to-10000)

(fast-sequence-map

sqr

(fast-sequence-filter

prime?

(in-range 0 10000))))

6 / 12



for loop structure

(for ([(x) (in-list '(1 2 5 3 10))])

(println x))

=⇒
(let loop ([lst '(1 2 5 3 10)])

(when (pair? lst)

(let ([x (car lst)]

[rest (cdr lst)])

(begin

(println x)

(loop rest)))))

7 / 12



Loop with two for clauses

(for ([(x) (in-list '(1 2 5 3 10))]

[(y) (in-range 0 7 1)])

(println (list x y)))

=⇒
(let loop ([lst '(1 2 5 3 10)] [pos 0])

(when (and

(pair? lst)

(< pos 7))

(let ([x (car lst)]

[rest (cdr lst)]

[y pos]

[next (+ 1 pos)])

(begin

(println (list x y))

(loop rest next)))))

8 / 12



fast-sequence-map

(for ([(x) (fast-sequence-map

sqr

(in-list '(1 2 5 3 10)))])

(println x))

=⇒
(let loop ([lst '(1 2 5 3 10)])

(when (pair? lst)

(let ([x* (car lst)]

[rest (cdr lst)])

(let ([x (sqr x*)])

(begin

(println x)

(loop rest))))))

9 / 12



fast-sequence-filter: Motivating a structure

(for/list ([x (in-list '(a b c d e))]

[y (fast-sequence-filter

odd?

(in-list '(1 2 3 4 5 6)))])

(list x y))

Wrong

x a b c d e

y 1 _ 3 _ 5

=⇒
'(a 1) '(c 3) '(e 5)

Right

x a b c d e

y 1 _ 3 _ 5 _

=⇒
'(a 1) '(b 3) '(c 5)

10 / 12



fast-sequence-filter

(for ([(x) (in-list '(a b c d e))]

[(y) (fast-sequence-filter

odd?

(in-list '(1 2 3 4 5 6)))])

(println (list x y)))

=⇒
(let loop ([(lst1 '(a b c d e))] [lst2 '(1 2 3 4 5 6)])

(when (and (pair? lst1) #t)

(let-values

([(x) (car lst1)]

[(rest1) (cdr lst1)]

#| find the next y and rest2,

or else y is done |#)

(when y-is-found

(println (list x y))

(loop rest1 rest2)))))

11 / 12



fast-sequence-filter

(for ([(x) (in-list '(a b c d e))]

[(y) (fast-sequence-filter

odd?

(in-list '(1 2 3 4 5 6)))])

(println (list x y)))

=⇒
(let loop ([(lst1 '(a b c d e))] [lst2 '(1 2 3 4 5 6)])

(when (and (pair? lst1) #t)

(let-values

([(x) (car lst1)]

[(rest1) (cdr lst1)]

[(y rest2 y-is-found)

(let loop ([lst lst2])

(cond [(pair? lst)

(let ([y (car lst)]

[rest (cdr lst)])

(cond

[(odd? y) (values y rest2 #t)]

[else (loop rest2)]))]

[else (values #f #f #f)]))])

(when y-is-found

(println (list x y))

(loop rest1 rest2))))) 12 / 12


