Fast Sequence Combinators

Anna Bolotina

Programming Research Laboratory
Czech Technical University in Prague

ann-bolotina@yandex.ru

RacketFest 2020

1/12

Programming quiz

@ What is the sum of squares of primes up to 100007
@ What is the product of squares of primes up to 100007

@ What is the first square of a prime that ends in 17

2/12

(define squares-of-primes-up-to-10000
(map sqr
(filter prime?
(range 0 10000))))

(for/sum ([(x) squares-of-primes-up-to-10000])
x)

(for/product ([(x) squares-of-primes-up-to-10000])
x)

(for/first ([(x) squares-of-primes-up-to-10000]

#:when (ends-in-17 x))

x)

3/12

(define squares-of-primes-up-to-10000
(sequence-map
sqr
(sequence-filter
prime?
(in-range 0 10000))))

(for/sum ([(x) squares-of-primes-up-to-10000])
x)

(for/product ([(x) squares-of-primes-up-to-10000])
x)

(for/first ([(x) squares-of-primes-up-to-10000]

#:when (ends-in-17 x))

x)

4/12

(for/sum ([(x) (in-range 0 10000)])
(if prime?
(sqr x)
0))

(for/or ([(x) (in-range 0 10000)1])
(if (prime? x)
(let ([x* (sqr x)1)
(if (ends-in-17 =x*)
X *
#£))
#£))

5/12

(define-syntax-rule (squares-of-primes-up-to-10000)
(fast-sequence-map

sqr
(fast-sequence-filter
prime?

(in-range 0 10000))))

6/12

for loop structure

(for ([(x) D
(println x))

—

(let loop ()
(when
(let (Ix

(begin
(println x)
(loop)))))

7/12

Loop with two for clauses

(for ([(x)]
[(y) (in-range 0 7 1)1)
(println (list x y)))
—

(let loop ([pos 0])
(when (and

(< pos 7))
(let (lx
[y pos]
[next (+ 1 pos)])
(begin
(println (list x y))
(loop next)))))

8/12

fast-sequence-map

(for ([(x) (fast-sequence-map

sqr
)1)
(println x))
=
(let loop ()
(when
(let (

)
(let ([x (sqr xx)])
(begin
(println x)
(loop))))))

9/12

fast-sequence-filter: Motivating a structure

(for/list ([x (in-1list '(a b ¢ d e))]
[y (fast-sequence-filter

odd?
(in-1list '(1 2 3 4 5 6)))1)
(list x y))
Wrong Right
Xx a b cd e X a b c d e
y1 _3_5 y 1 _3_5 _
f— —
"(a 1) '"(c 3) '(e 5) "(a 1) '"(b 3) '(c 5)

10/12

fast-sequence-filter

(for ([(x) (in-list '(a b c d e))]
[(y) (fast-sequence-filter

odd?
)1)
(println (list x y)))
e
(let loop ([(lstl "(a b c de))])

(when (and (pair? 1stl))
(let-values
([(x) (car 1st1)]
[(restl) (cdr 1stl)]
#| find the next y and rest2,
or else y is done [#)
(when y-is-found
(println (list x y))
(loop restl)DDDY]

11/12

fast-sequence-filter

(for ([(x) (in-list '(a b c d e))]
[(y) (fast-sequence-filter
odd?
)1

(println (list x y)))

—

(let loop ([(lstl '(a b c de))])
(when (and (pair? lstil))
(let-values
([(x) (car 1lst1)]
[(restl) (cdr 1stl)]
[(y y-is-found)
(let loop ()
(cond [
(let ([y
)
(cond
[(odd? y) (values y #t)]
[else (loop)IN]
[else (values #f #£)1))1)
(when y-is-found
(println (list x y))
(loop restl)DDDY) 12 /12

