
Handling Recursion in Generic Programming
Using Closed Type Families

Anna Bolotina1 and Artem Pelenitsyn2

1 Southern Federal University, Rostov-on-Don, Russia
bolotina@sfedu.ru

2 Northeastern University, Boston, USA
artem@ccs.neu.edu

Abstract. Many of the extensively used libraries for datatype-generic
programming offer a fixed-point view on datatypes to express their re-
cursive structure. However, some other approaches, especially the ones
based on sums of products, avoid the fixed point encoding. They facili-
tate implementation of generic functions that do not require to look at
the recursive knots in a datatype representation, but raise issues other-
wise. A widely used and unwelcome solution to the problem resorts to
overlapping instances. In this paper, we present an alternative approach
that uses closed type families to eliminate the need of overlap for han-
dling recursion in datatypes. Moreover, we show that this idiom allows
for generic programming with families of mutually recursive datatypes.

Keywords: Datatype-generic programming · Sums of products · Recur-
sion · Overlapping instances · Closed type families · Zipper · Mutually
recursive datatypes · Haskell.

1 Introduction

A classical way to generically express a datatype is to represent its construc-
tors as the chains of nested binary sums, and turn constructor arguments into
the chains of nested binary products [28, 5, 16]. De Vries and Löh [7] describe a
different sum-of-products approach to representing data using n-ary sums and
products that are both lists of types; a sum of products is thus a list of lists
of types. They call their view SOP which stands for a “sum of products”. It
is implemented in the generics-sop [8] library and is based on several relatively
recent extensions to the Haskell type system, such as data kinds, kind polymor-
phism [31] and constraint kinds. Using these Haskell features, the library provides
the generic view and equips it with a rich collection of high-level combinators,
such as ones for constructing sums and products, collapsing to homogeneous
structures, and others. They form an expressive instrument for defining generic
functions in a more succinct and high-level style as compared to the classical
binary sum-of-products views.

There are many generic functions that deal with the recursive knots when
traversing the structure of datatypes. Some of the most general examples are

2 Anna Bolotina and Artem Pelenitsyn

maps [20] and folds [24]; a more advanced one is a zipper [12, 11, 1]. For han-
dling recursion, several generic programming approaches express datatypes in
the form of polynomial functors closed under fixed points [30, 13, 18]. However,
the SOP view does not reflect recursion points in generic representation types.
So it naturally supports definitions of functions that do not require a knowledge
about recursive occurrences, but otherwise becomes unhandy.

One possible solution to the aforementioned shortcoming of SOP is to modify
its core by explicitly encoding recursive positions using the fixed-point approach.
However, this may complicate the whole framework significantly. Besides, such
a decision may lead to extra conversions between the generic views: the original
SOP encoding and the modified one.

Another known solution uses overlapping instances. This, usually unwelcome,
Haskell extension complicates reasoning about the semantics of code. In particu-
lar, the program behavior becomes unstable, for it can be affected by any module
defining more specific instances. Morris and Jones [25] extensively discuss the
problems arising from overlapping instances. One of those problems is late error
reporting, which is a consequence of the fact that GHC resolves overlapping in-
stances at call sites. That is, if there are more than one most specific instances
for particular types, GHC does not determine that before one’s attempt to use
the class function with those types. Another notable problem is lack of specifica-
tion for overlapping instances, so their behavior depends on a concrete compiler.
The overlap problem also strikes in the security setting, when code is compiled
as −XSafe, because GHC does not reflect unsafe overlaps and marks the module
as safe [10].

The problem of using overlapping instances was first addressed by Kise-
lyov et al. [15]. Their technique for avoiding overlap relies on a Haskell 98
extension for functional dependencies. The solution proposes two variants of
defining a type-level equality predicate, a type class, and then systematically
localizes overlap by circumventing it with that predicate. The first version of
type equality maps types to unique type representations and compares them.
That variant and its later implementation with type families [14] fully eliminate
OverlappingInstances. Despite this, each type needs a representation instance to
be derived—by means of Template Haskell or GHC. The most generic solution
for type equality, the second version, again makes use of overlapping instances,
however.

Closed type families, today’s Haskell extension, has been proposed primarily
to obviate the need for overlapping instances. In the area of generic program-
ming, the extension does not seem to be widely leveraged yet. Exploiting this
observation, we make the following contributions.

– We describe the problem with the current approach of SOP in detail (Sec-
tion 2).

– We introduce an idiom that overcomes the problem. The approach avoids
both, the use of overlapping instances and changing a generic representation
(Section 3).

Handling Recursion in Generic Programming Using Closed Type Families 3

– We evaluate our approach through the development of a larger-scale use
case—the generic zipper. The zipper is meant to be easily and flexibly used
with families of mutually recursive datatypes (Section 4).

– We note, that our approach can contribute to the generics-sop’s one eliminat-
ing some boilerplate instance declarations, which necessarily arise in practice
as a consequence of absence of information about recursion points. An exam-
ple of that, taken from the basic-sop [27] package, is discussed in Section 3.2.

We believe that the idea presented is suitable for any sum-of-products ap-
proach that does not employ the fixed point view and thus subject to the prob-
lem. We choose the generics-sop library as a case study because it appears to be
a widely applicable library and builds on powerful language extensions imple-
mented in GHC.

2 The SOP universe and the problem

In this section, we first review the SOP view on data, describing its basic concepts
to introduce the terminology we are using. Then we discuss the problem with
handling recursion by generic functions and illustrate it with a short example.

2.1 The SOP view

We first explain the terminology we adopt from SOP [7, 17] and use throughout
the paper. The main idea of the SOP view is to use n-ary sums and products to
represent a datatype as an isomorphic code whose kind is a list of lists of types.
The SOP approach expresses the code using the DataKinds extension, with a
type family:

type family Code (a :: ∗) :: [[∗]]

An n-ary sum and an n-ary product are therefore modelled as type-level het-
erogeneous lists: the inner list represents an n-ary product, isomorphic to a
sequence of constructor arguments, while the outer list, representing an n-ary
sum, corresponds to a choice of a particular constructor.

Consider, for instance, a datatype of binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)

This datatype is isomorphic to the following code:

type instance Code (Tree a) = ’[’ [a] , ’ [Tree a, Tree a]]

As shown in Figure 1, the datatypes NS for an n-ary sum and NP for an n-ary
product are defined as GADTs and are indexed [11] by a promoted list of types.
The encoding also holds an auxiliary type constructor f (typically, a functor)
which is meant to be applied to every element of the index list. Therefore, NP
is a modest abstraction over a heterogeneous list.

The definitions of NS and NP are kind polymorphic. The index list is allowed
to contain types of arbitrary kind k, since k turns to ∗ by applying the type

4 Anna Bolotina and Artem Pelenitsyn

data NP (f :: k → ∗) (xs :: [k]) where
Nil :: NP f ’ []
(:∗) :: f x → NP f xs → NP f (x ’ : xs)

data NS (f :: k → ∗) (xs :: [k]) where
Z :: f x → NS f (x ’ : xs)
S :: NS f xs → NS f (x ’ : xs)

Fig. 1. Datatypes for n-ary sums and products.

constructor f . Basic instantiations of type parameter f found in SOP are identity
functor I, that is, a type-level equivalent for id function, and a constant functor
K, an analogue of const :

newtype I (a :: ∗) = I {unI :: a}
newtype K (a :: ∗) (b :: k) = K {unK :: a}

If instantiated with I, NP is a plain heterogeneous list, while K a turns it into a
homogeneous one, isomorphic to [a] . Here is an example value of type NP I:

I 5 :∗ I True :∗ I ’x ’ :∗ Nil :: NP I ’ [Int , Bool, Char]

We turn to the sum definition now. The constructors S and Z of NS allow to
represent choices from a sum as indices in the form of Peano numbers. Firstly, the
application of Z represents the choice of the first component of the sum. Secondly,
S is the successor constructor. That is, S . Z chooses the second component, and
so on up to the length of the index list xs. Given a sum of type NS f xs, the i-th
choice has type f x, where x is the i-th element in xs. For example, the following
represents the third choice from a sum:

S (S (Z (I 5))) :: NS I ’ [Char, Bool, Int , Bool]

Putting this together, each term of a particular datatype can be represented
as the choice from the sum of products, representing that datatype. The choice
matches the index of its particular constructor in the index list, and stores the
product, representing arguments of that constructor.

With the NS and NP machinery at hand, SOP defines the Generic class
with conversion functions from and to, witnessing the isomorphism between a
datatype and its generic representation:

type Rep a = SOP I (Code a)
newtype SOP f a = SOP {unSOP :: NS (NP f) a}

class All SListI (Code a) ⇒ Generic (a :: ∗) where
type Code a :: [[∗]]
from :: a → Rep a
to :: Rep a → a

The sum of products type, SOP f, is a newtype-wrapper for NS (NP f), and the
structural representation Rep of a datatype a is a type synonym for a SOP I of a’s

Handling Recursion in Generic Programming Using Closed Type Families 5

code. The functions, from and to, perform a shallow conversion of the datatype
topmost layer—they do not recursively translate the constructor arguments.

The SListI constraint in the Generic class definition is used in generics-sop
to represent type-level index lists at the level of terms as singletons. We leave
out discussion of this constraint, as it is irrelevant to our work. Although, we do
use All constraint combinator (as in All SListI) in the following. Therefore, it
is worth noting that All applies a particular constraint (e.g. SListI above) to
each member of a list of types. The usage of constraints as type arguments is
allowed due to the ConstraintKinds language extension introducing a dedicated
kind Constraint .

We have introduced generic representation employed by the SOP library and
are ready to describe the problem of handling recursion points, stemming from
the representation.

2.2 Problem with handling recursion

We illustrate the problem through a short example. The QuickCheck library [6]
for automatic testing of Haskell code defines a helper function subterms that
takes a term and obtains a list of all its immediate subterms that are of the
same type as the given term, that is, all the recursive positions in the term
structure. In the following, we reimplement this function using the SOP view.
But first we give a sketch of solution to introduce the idea.

Non-implementation We outline one possible approach to SOP-based imple-
mentation of subterms below. It gives a clear idea of our intention, but so far,
we miss the necessary toolbox (in particular, typeOf / castEq) to finish it.

subterms :: Generic a ⇒ a → [a]
subterms = subtermsNS . unSOP . from

subtermsNS :: NS (NP I) xss → [a]
subtermsNS (S ns) = subtermsNS ns
subtermsNS (Z np) = subtermsNP np

subtermsNP :: ∀a xs . NP I xs → [a]
subtermsNP (I y :∗ ys)
| typeOf @a y = castEq y : subtermsNP ys
| otherwise = subtermsNP ys

subtermsNP Nil = []

The function subterms translates the term to its representation, unwrapping the
sum of products from SOP, and passes that to the auxiliary function subtermsNS.
The latter merely traverses the sum and, once reaches the product, passes it
further to subtermsNP.

The algorithm of subtermsNP is straightforward—it traverses the product,
appending the current element to the result list if its type is the same as of the
original term, otherwise skipping the element. We use GHC’s TypeApplications
extension to pass that type.

6 Anna Bolotina and Artem Pelenitsyn

Note that our implementation uses plain pattern matching for reasons of
simplicity. However, in Section 3.1, we show a higher-level solution using one of
the primary advantages of generics-sop—high-level traversal functions.

Overlap-based implementation Now, we need a way to check type equality
and, in the case of equal types, to witness that the element is of the desired type.
There is no clear path to this at the moment. Therefore, we step back (until
Section 3.1) and, to implement subtermsNP, follow the QuickCheck’s example3,
using overlapping instances of a dedicated class instead.

class Subterms a (xs :: [∗]) where
subtermsNP :: NP I xs → [a]

instance Subterms a xs ⇒ Subterms a (x ’ : xs) where
subtermsNP (:∗ xs) = subtermsNP xs

instance {-#OVERLAPS#-}
Subterms a xs ⇒ Subterms a (a ’ : xs) where

subtermsNP (I x :∗ xs) = x : subtermsNP xs
instance Subterms a ’ [] where

subtermsNP = []

To make the whole solution work, we need to propagate the constraints all
the way through subtermsNS and subterms signatures:

subterms :: (Generic a, All (Subterms a) (Code a))
⇒ a → [a]

subtermsNS :: All (Subterms a) xss
⇒ NS (NP I) xss → [a]

Although the approach works, as exemplified by a number of the packages on
Hackage, we aim to release generic programs from overlap. This would remove
the complexity overhead introduced by the approach, as we have mentioned in
the introduction.

3 Handling recursion with closed type families

In the previous section, we have shown a solution to the problem of handling
recursion, which uses overlapping instances. We are going to improve the solution
and remove overlap now.

Closed type families are the Haskell language extension introduced by Eisen-
berg et al. [9]. The main idea of the extension is that the equations for a closed
type family are disallowed outside its declaration. Under the extension, we can
give the following definition of type-level equality:

type family Equal a x :: Bool where

3 The QuickCheck library applies another approach to generic programming, namely
GHC.Generics.

Handling Recursion in Generic Programming Using Closed Type Families 7

Equal a a = ’True
Equal = ’False

The equations in a closed type family are matched in a top-to-bottom order.
Since the order is fixed, the overlapping equations here cannot be used to define
unsound type-level equations.

3.1 Solution to subterms revised

We now return to our running example from Section 2.2. With the type equality
predicate, we can decide if a ∼ b by defining a type class:

class DecideEq (eq :: Bool) (a :: ∗) (b :: ∗) where
decideEq :: Maybe (b :∼: a)

instance a ∼ b ⇒ DecideEq True a b where
decideEq = Just Refl

instance DecideEq False a b where
decideEq = Nothing

If the types a and b are the same, the :∼: type from Data.Type. Equality witnesses
the equality.

For every element in a list of all direct subterms of a term, we shall provide
a proof object witnessing its type (in)equality to the type of the term. This can
be done by means of the All combinator and partially applied dedicated type
class ProofEq, which abbreviates the heavy-weighted interface of DecideEq:

class DecideEq (Equal a b) a b ⇒ ProofEq a b
instance DecideEq (Equal a b) a b ⇒ ProofEq a b

The equality proof can then be employed to provide castEq (Section 2.2). The
definition makes use of castWith, which performs a type-safe cast between two
equal types, using the equality witness b :∼: a:

castEq :: ∀a b . ProofEq a b ⇒ b → Maybe a
castEq t = (\d → castWith d t) <$> decideEq @(Equal a b)

Below we show two variants of completing the subterms implementation. The
low-level version performs pattern matching on the structure of NS and NP, as
we do in Section 2.2. For this variant, we reimplement subtermsNP. The differ-
ent implementation employs powerful machinery of high-level combinators—one
of the major advantages provided by generics-sop. Although, those high-level
functions become one extra layer of complexity.

Low-level implementation The low-level definition of subtermsNP using the
type cast resembles its outline given in the previous section:

subtermsNP :: ∀a xs . All (ProofEq a) xs ⇒ NP I xs → [a]
subtermsNP (I (y :: x) :∗ ys) =

case castEq y of

8 Anna Bolotina and Artem Pelenitsyn

Just t → t : subtermsNP ys
Nothing → subtermsNP ys

subtermsNP Nil = []

As a side note, we make use of the ScopedTypeVariables extension in the
definition above, as the type of the element being matched does not appear in
the function signature, since it may match an empty list.

To finish up, the ProofEq constraint must be added to the subterms and
subtermsNS declarations as well.

High-level implementation By taking advantage of generics-sop’s powerful
functions for collapsing and mapping, one can define the functions subtermsNS
and subtermsNP as follows:

subtermsNS :: ∀a xss . All (AllProofEq a) xss
⇒ NS (NP I) xss → [a]

subtermsNS = collapse NS
. cmap NS (Proxy @(AllProofEq a)) subtermsNP

subtermsNP :: ∀a xs . AllProofEq a xs ⇒ NP I xs → K [a] xs
subtermsNP = K . catMaybes

. collapse NP

. cmap NP (Proxy @(ProofEq a)) (mapIK $ castEq)

This implementation requires also defining AllProofEq and properly changing
the subterms type annotation.

In summary, we claim that any generic function accessing recursive knots in
the underlying datatype structure can be defined in the way described above for
the task of subterms. We give other examples showing how to adapt our idiom
to different scenarios in the following subsections.

3.2 Generic show

The function show is a common example of useful functions that traverse a
datatype’s recursive structure. It is known that this function can be defined in a
generic way for an arbitrary datatype. De Vries and Löh define generic function
gshow in the basic-sop package [27] based on the SOP view. We follow their
implementation of gshow for the most part, but improve it in respect of handling
recursion. The example shows, how the better implementation, consulting with
recursive positions, affects the usability of the function, obviating boilerplate
code.

The following exploits the idea of pattern matching. As before, we consider
two cases. In the first case, when the position we are matching on is not recursive,
we only require it to be an instance of Show, and invoke its show function.
Whereas in the case of the recursive position, we apply our generic function
gshow. Thus, by means of the type family for equality, we model a form of
pattern matching on the types again:

Handling Recursion in Generic Programming Using Closed Type Families 9

class CaseShow (eq :: Bool) (a :: ∗) (b :: ∗) where
caseShow’ :: b → String

instance Show b ⇒ CaseShow ’False a b where
caseShow’ = show

instance GShow a ⇒ CaseShow ’True a a where
caseShow’ = gshow

We provide a synonym for the CaseShow (Equal a b) a b instance, which we
call CaseRecShow, as before with ProofEq; likewise a synonym for the matching
function:

caseShow :: ∀a b . CaseRecShow a b ⇒ b → String
caseShow = caseShow’ @(Equal a b) @a

The resulting function gshow is subject to a number of constraints abbrevi-
ated by a GShow synonym:

type GShow a = (Generic a, HasDatatypeInfo a,
All2 (CaseRecShow a) (Code a))

gshow :: ∀a . GShow a ⇒ a → String

The function gshow employs meta-information provided by generics-sop’s class
HasDatatypeInfo to show the names of a datatype constructor and its record
fields. The generics-sop library is able to derive this metadata automatically.
The function is also constrained by CaseRecShow with the All2 combinator that
is an analogue of All for a list of lists of types.

We define gshow mutually recursive with caseShow. The full implementation
of the function gshow is left for the extended version of the paper in Technical
Report4.

The function gshow can now be used to generically show data—for example,
a value of type Tree Bool; note that Tree a from Section 2.1 is now assumed to
be an instance of Generic and HasDatatypeInfo.

*Main> let tree = Node (Leaf True) (Leaf False)

*Main> gshow tree

"Node (Leaf True) (Leaf False)"

Our implementation of gshow obviates one drawback of its analogue from
basic-sop. This drawback is that gshow from basic-sop does not treat recursive
positions separately, and therefore requires the Show constraint for all knots in
the datatype structure:

gshow :: ∀a . (Generic a, HasDatatypeInfo a, All2 Show (Code a))
⇒ a → String

As a consequence, basic-sop offers the following usage pattern for gshow and
some datatype T, requiring an additional Show instance declaration for T:

4 https://users.fit.cvut.cz/∼pelenart/2018-generic-zipper-tr.pdf

10 Anna Bolotina and Artem Pelenitsyn

instance Show T where
show = gshow

As we have shown, the variant of the function gshow, distinguishing the recursion
cases, can be used directly, without this extra declaration. This takes advantage
of employing the polytypic instance of CaseRecShow for all datatypes.

3.3 Generic recursion schemes

Recursion schemes, such as fold [24, 30] and compos [3], are classical examples of
generic functions that are usually treated by a fixed point view. In this subsec-
tion, we show how they can be defined in the SOP view, adopting our approach.

Generic compos The function compos is a traversal combinator for defining
compositional functions. It applies a given function to all immediate children of
a given term ot type T:

compos :: (T → T) → T → T

This can be used, for example, with a datatype Expr for defining the renameVar
function, updating all variables in a given expression without affecting its other
subexpressions:

data Expr = EAbs String Expr | EApp Expr Expr | EVar String

renameVar :: Expr → Expr
renameVar (EVar x) = EVar $ x ++ ” ”
renameVar e = compos renameVar e

The implementation of the generic function gcompos employs a class for re-
solving recursion cases, which now looks as the following:

class CaseComposAux (eq :: Bool) (a :: ∗) (x :: ∗) (y :: ∗) where
caseComposAux :: (a → a) → I x → I y

instance CaseComposAux ’False a x x where
caseComposAux = id

instance CaseComposAux ’True a a a where
caseComposAux f = I . f . unI

The function caseCompos, an abbreviation for caseComposAux @(Equal a x), is
supposed to be applied to each component of the product, representing argu-
ments of a chosen constructor. Given a component of type I x, it results in the
component of different type I y. (The implementation below makes use of a
higher-order function, whose type does not admit that x and y can be unified
here.) The first case in this definition corresponds to mapping over a constant,
which should not be changed. The second case is the application of the given
function f to a recursive position.

The rest of the work is handled by generics-sop’s function trans SOP:

Handling Recursion in Generic Programming Using Closed Type Families 11

trans SOP :: AllZip2 c xss yss
⇒ proxy c → (forall x y . c x y ⇒ f x → g y)
→ SOP f xss → SOP g yss

This function transforms the generic representation of a term, applying a given
function to every component of a chosen product. AllZip2 here is analogous to
All2, zipping two lists of lists with the binary constraint c.

Finally, the definition of gcompos, using trans SOP with caseCompos, is fol-
lowing, with CaseCompos abbreviating the use of CaseComposAux :

type GCompos a = (Generic a, AllZip2 (CaseCompos a) (Code a) (Code a))

gcompos :: ∀a . GCompos a ⇒ (a → a) → a → a
gcompos f = to . composSOP . from

where
composSOP = trans SOP (Proxy @(CaseCompos a)) $ caseCompos f

Generic fold A fold is a higher-order function that recursively deconstructs a
term, using a combining operation on its structure to aggregate the result. For
example, consider a fold for a datatype of arithmetic expressions AExpr:

data AExpr = EConst Int | EAdd AExpr AExpr | EMul AExpr AExpr

foldAExpr :: (Int → r , r → r → r , r → r → r) → AExpr → r
foldAExpr f @(f1 , f2 , f3) e = case e of

EConst x → f1 x
EAdd l r → f2 (foldAExpr f l) (foldAExpr f r)
EMul l r → f3 (foldAExpr f l) (foldAExpr f r)

Given f—called an algebra—it proceeds through the recursive structure of a
given term e, applying its components f1 , f2 , and f3 to elements of e and
combining the results. This can be used to evaluate expressions. Consider:

example = EAdd (EMul (EConst 3) (EConst 2))
(EAdd (EMul (EConst 2) (EConst 2))

(EConst 5))

The call

foldAExpr (id , (+) , (∗)) example

yields 15.
In the example above, (Int → r , r → r → r , r → r → r) is a type of

algebras for the datatype AExpr to a result type r. This type represents the
underlying recursive structure of AExpr. In particular, the constructors of AExpr
form an algebra for expressions, which is isomorphic to AExpr:

(EConst, EAdd, EMul) :: (Int → AExpr,
AExpr → AExpr → AExpr,
AExpr → AExpr → AExpr)

12 Anna Bolotina and Artem Pelenitsyn

A type of algebras for a particular datatype a can be computed generically from
its representation code. The result type r should occur in this type whenever
a (a recursive position) occurs in the code. In the following, the type families
AlgebraS and AlgebraP are employed to compute a type of algebras for a given
datatype a and a result type r.

type family AlgebraS (code :: [[∗]]) a r :: [∗] where
AlgebraS (xs ’ : xss) a r = (AlgebraP xs a r ’ : AlgebraS xss a r)
AlgebraS ’ [] = ’ []

type family AlgebraP (xs :: [∗]) a r where
AlgebraP (a ’ : xs) a r = r → AlgebraP xs a r
AlgebraP (x ’ : xs) a r = x → AlgebraP xs a r
AlgebraP ’ [] r = r

type Algebra a r = NP I (AlgebraS (Code a) a r)

The calculated type of algebras Algebra a r is meant to be an NP of its com-
ponents, which are constructed by AlgebraP from each product in the code. All
the components, being applied to the elements of a datatype structure, return a
result of type r, as handled by the last case in the AlgebraP definition.

We turn to defining a generic fold. First, define a class CaseFoldAux with a
function caseFoldAux , which perform the main work and serve for managing the
two recursion cases. As before, we will use the synonyms CaseFold and caseFold
to abbreviate their use with the application of Equal a x:

class CaseFoldAux (eq :: Bool)
(a :: ∗) (b :: ∗) (x :: ∗) (y :: ∗) where

caseFoldAux :: Algebra a b → I x → I y

instance CaseFoldAux ’False a b x x where
caseFoldAux = id

instance GFold a b ⇒ CaseFoldAux ’True a b a b where
caseFoldAux f = I . applyAlgebra @a f . foldSOP . from . unI

where
foldSOP = trans SOP (Proxy @(CaseFold a b)) $

caseFold @a @b f

The function caseFoldAux is meant to operate on the elements of a product
constituting a part of a datatype’s representation. For constants, there are no
recursive calls, so an operation for that case is trivially the identity function.
Whereas in the case of the recursion point, this turns the element to its repre-
sentation, then recursively processes that, and applies the given algebra to the
result. This employs the function applyAlgebra that applies the algebra to the
representation gained as a result of processing:

applyAlgebra :: ∀a b . ApplyAlgebra a b
⇒ Algebra a b → SOP I (AlgCode a b) → b

Handling Recursion in Generic Programming Using Closed Type Families 13

That representation has the code, calculated from the origin code of a by replac-
ing its recursive occurences therein with the algebra’s result type b. AlgCode a b
here is a type synonym for the result of this computation. We omit the imple-
mentation of applyAlgebra , as well as of the type-level machinery of AlgCode
and ApplyAlgebra, for the sake of space.

The type applications @a and @b appear in the lines above, because they
are needed to calculate the Algebra a b type. Also, the constraint GFold a b on
the second instance of CaseFoldAux is necessary to use applyAlgebra , caseFold ,
and from:

type GFold a b = (Generic a
, AllZip2 (CaseFold a b) (Code a) (AlgCode a b)
, ApplyAlgebra a b)

The generic fold function gfold is defined using caseFold :

gfold :: ∀a b . GFold a b ⇒ Algebra a b → a → b
gfold f = unI . caseFold @a @b f . I

This can be conveniently used with various algebras that are now of type
NP, if we define an infix operator & for constructing products:

infixr 1 &
x & ys = I x :∗ ys

The call of gfold with example, defined above in this subsection,

gfold (id & (+) & (∗) & Nil) example

again yields 15.

3.4 Abstract description of the design pattern

We can continue along the lines of the previous examples to consider the ap-
proach separately from concrete ones. One can use the technique, following the
abstracted pattern below:

class DispatchRecAux (p :: Bool)
(a1 :: k1) . . . (an :: kn) (b :: ∗) where

dispatchRecAux :: X b

instance C1 . . . ⇒ DispatchRecAux ’False a1 . . . an b where
dispatchRecAux = f1

instance C2 . . . ⇒ DispatchRecAux ’True a1 . . . an b where
dispatchRecAux = f2

class DispatchRecAux (P a1 . . . ak b) a1 . . . ak . . . an b
⇒ DispatchRec a1 . . . an b

instance DispatchRecAux (P a1 . . . ak b) a1 . . . ak . . . an b
⇒ DispatchRec a1 . . . an b

dispatchRec :: ∀a1 . . . an b . DispatchRec a1 . . . an b ⇒ X b

14 Anna Bolotina and Artem Pelenitsyn

dispatchRec = dispatchRecAux @(P a1 . . . ak b) @a1 . . . @ak . . . @an

This machinery employs the abstract multi-place predicate P on types, sup-
posed to be a closed typed family, to resolve the overlap of two dispatch branches,
as captured by DispatchRecAux . The predicate P generalizes Equal to an arbi-
trary relation on types, so that one can model, e.g., subtyping for some domain-
specific language. The introduction of the associated type class DispatchRec pro-
vides a handy interface for dispatch. The dispatch function dispatchRec decides
on one of the functions f1 and f2—depending on whether the predicate P is
true for types a1 , . . . , ak , b. Here, the type b is supposed to be an instance of
Generic.

The type X b, associated with b, depends of the kind of the generic function.
All generic functions may be classified into three categories [26]: consumers,
transformers, and producers. Given type b, an instance of Generic, they turn b
into a constant type, b into b with a changed value, and a constant type into b,
respectively. For consumer functions, such as gshow (Section 3.2), the type X b
typically is instantiated with b → T for some datatype T. For transformers,
such as gcompos (Section 3.3), X b typically takes the form S → I ai → I aj .
Here, ai , aj for i 6= j are from a1 . . . an , and are supposed to be equal to b at
recursion points, and S is some type. This suggests that the transformer function
changes b, employing values of type S. The pattern fits equally well for defining
producers, such as garbitrary from the basic-sop package, where X b would be
instantiated with Gen b.

4 The generic zipper

The zipper is a data structure that enables efficient navigation and editing within
the tree-like structure of a datatype. It represents a current location in that
structure, storing a tree node, a focus, along with its context. Having a zipper
focused on a recursive knot in a structure, we may produce a new location by
moving the focus up, down, left, or right. On the way, we can update the nodes.
Entering and leaving the navigation usually need a special care.

The classical zipper described by Huet [12] can be generically calculated for
regular datatypes [11]—all datatypes expressible as polynomial expressions on
types. Yakushev et al. [30] generalize the definition of the generic zipper for an
arbitrary family of mutually recursive datatypes. All mentioned solutions require
a datatype to be expressed using forms of a fixed-point operator, since the zipper
operates on recursion points.

In this section, we describe our approach allowing one to define the generic
zipper out of a representation that does not exploit a fixed point. We start with
the generic zipper interface and an example of how it can be used (Section 4.1).
Then, we turn to the type-level machinery employed to define locations inside
mutually recursive datatypes using the SOP view (Section 4.2).

Handling Recursion in Generic Programming Using Closed Type Families 15

Movement functions

goUp :: Loc a fam c → Maybe (Loc a fam c)
goDown :: Loc a fam c → Maybe (Loc a fam c)
goLeft :: Loc a fam c → Maybe (Loc a fam c)
goRight :: Loc a fam c → Maybe (Loc a fam c)

Starting navigation

enter :: ∀fam c a . (Generic a, In a fam, Zipper a fam c)
⇒ a → Loc a fam c

Ending navigation

leave :: Loc a fam c → a

Updating

update :: (∀b . c b ⇒ b → b) → Loc a fam c → Loc a fam c

Fig. 2. Generic zipper interface.

In a technical report, we discuss the implementation of the generic zipper
interface—the functions for manipulating locations. The source code with the
full implementation of the zipper is available at our GitHub repository5.

4.1 Interface and usage

The interface we provide for the generic zipper is shown on Figure 2. It comprises
the functions for movement, starting and ending navigation, and updating the
focus, which are defined over the location structure.

The functions goUp, goDown, goLeft , and goRight produce a location with
the focus moved up to the parent of the focal subtree, down to its leftmost
child, left and right to the left and right sibling, respectively, if it is possible. A
movement may fail, as specified by the Maybe monad, if we cannot go further in
a chosen direction. Navigation in a tree starts at the root, and the type variable
a refers to the root type that remains the same during the navigation, while the
type in the focus of the location may vary and is one of the types in a type list
fam.

The function signature of enter specifies the constraints necessary to begin
navigation in a structure. Firstly, a datatype of the structure needs to have
the Generic representation. Secondly, the In constraint checks if type a is a
member of a type family fam. Thirdly, the Zipper constraint collects specific
constraints that refer to the implementation of movement operations. Note that
the universal quantifier here sets the instantiation order of the type variables for
type applications that will be a part of our usage pattern for the zipper.

The leave function ends navigation moving up to the root and returns its
modified value.

5 https://github.com/Maryann13/Zipper

16 Anna Bolotina and Artem Pelenitsyn

The update function modifies the focal subtree with a given constrained func-
tion. The type in focus is existentially quantified inside Loc and should satisfy
the constraint c. The structure of Loc (shown in Section 4.2) guarantees that the
constraint holds for all types in the family fam and, therefore, for all recursive
nodes that can be in focus, hence update can always be applied.

Consider the following example of usage of the interface. Define a pair of
mutually recursive datatypes for a rose tree and a forest, where the forest is
a list of trees, and the tree is defined as a value in a node and a forest of its
children:

data RoseTree a = RTree a (Forest a)

data Forest a = Empty | Forest (RoseTree a) (Forest a)

Updating the trees can be done through a class:

class UpdateTree a b where
replaceBy :: RoseTree a → b → b
replaceBy = id

instance UpdateTree a (RoseTree a) where
replaceBy t = t

instance UpdateTree a (Forest a)

This replaces a tree node with a given tree, and, for the forests, this leaves the
nodes untouched.

For chaining moves and edits, we can follow Yakushev et al. [30] and employ
the flipped function composition >>> and Kleisli composition >=>. The latter is
instantiated with the Maybe monad that wraps the result type of the movement
functions.

(>>>) :: (a → b) → (b → c) → (a → c)
(>=>) :: Monad m⇒ (a → m b) → (b → m c) → (a → m c)

The type family we need to run the example is defined as follows:

type TreeFam a = ’[RoseTree a, Forest a]

Finally, we can use zipper operations with our updating function to traverse
and replace a part of a forest:

*Main> let forest

= Forest (RTree ’a’ $ Forest (RTree ’b’ Empty) Empty)

(Forest (RTree ’x’ Empty) Empty)

*Main> let t = RoseTree ’c’ Empty

*Main> enter @(TreeFam Char) @(UpdateTree Char)

>>> goDown >=> goRight >=> goDown

>=> update (replaceBy t)

>>> leave >>> return $ forest

This yields the following result:

Handling Recursion in Generic Programming Using Closed Type Families 17

Forest (RTree ’a’ $ Forest (RTree ’b ’ Empty) Empty)
(Forest (RTree ’c ’ Empty) Empty)

Our zipper applies to regular datatypes as well. In that case, fam list shall
contain a single element. Generally, the interface is flexible enough to allow us to
check in any collection of types we are interested in during traversal. However,
we demand an updating operation to rely on a type class function to distinguish
the types of the nodes.

4.2 Locations

The location structure consists of a focal subtree, which is one of the mutu-
ally recursive nodes of the whole structure of the family of datatypes, and its
surrounding context:

data Loc (r :: ∗) (fam :: [∗]) (c :: ∗ → Constraint) where
Loc :: Focus r a fam c → Contexts r a fam c
→ Loc r fam c

The type parameters r, fam, and c in Loc correspond to the root type of the
tree, the list of types of nodes to visit, and a constraint imposing restrictions
on the types in the list, respectively. Also, the single constructor is existentially
quantified over one more type variable, a, for we need to store a type of the focus’
parent to be able to move up successively in a tree-like structure. We discuss
both the term parameters of the constructor of Loc in detail below.

Focus The subtree in focus is wrapped by the Focus datatype. The wrapper
encapsulates the proofs about a number of important properties of a focus.

data Focus (r :: ∗) (a :: ∗) (fam :: [∗])
(c :: ∗ → Constraint) where

Focus :: (Generic b , In b fam, ZipperI r a b fam c)
⇒ b → Focus r a fam c

Existential type variable b represents the type of a focus. We apply a number
of predicates to b, hence we can implement the steps of the navigation without
knowing the actual type of a focus. Firstly, the type of a focus should have the
Generic representation. Secondly, it should live In the list of types we are going
to visit. Lastly, it ought to satisfy the set of constraints for the whole zipper
interface captured by the ZipperI predicate. In particular, the predicate ensures
that a is the type of the parent for the focus in the structure under consideration.
Also, it guarantees that b fulfils the constraint c.

We implement the In constraint by means of a type family InFam exactly
along the lines of the Equal type family defined in the beginning of Section 3.

type In a fam = InFam a fam ∼ ’True

The definition of InFam is omitted, as it is a boring one.

18 Anna Bolotina and Artem Pelenitsyn

class ProofFocusAux (inFam :: Bool) (r :: ∗) (a :: ∗) (b :: ∗)
(fam :: [∗]) (c :: ∗ → Constraint) where

castFocusAux :: b → Maybe (Focus r a fam c)

instance ProofFocusAux ’False r a b fam c where
castFocusAux = Nothing

instance (Generic b , In b fam, ZipperI r a b fam c)
⇒ ProofFocusAux ’True r a b fam c where

castFocusAux = Just . Focus

class ProofFocusAux (InFam b fam) r a b fam c
⇒ ProofFocus r a b fam c

instance ProofFocusAux (InFam b fam) r a b fam c
⇒ ProofFocus r a b fam c

Fig. 3. Proof of membership of a family of datatypes.

One last missing piece for managing focuses is the class ProofFocus. It pro-
vides a proof of membership of a focus type to a family. Again, this generalizes
(in a weak form) the proof of type equality from Section 3.1. The definitions
of ProofFocus and an auxiliary class ProofFocusAux are given in Figure 3. In
the setting of families, where there are no analogues of :∼:, we can define only
a weak kind of proof, which is more flexible. We can then make it handy by
defining a function castFocus using castFocusAux , as with castEq before.

Contexts A focus on a particular node, augmented with a surrounding context
of that node, is enough to reconstruct the entire structure. Therefore, the context
of a location has the shape of the original structure but with one hole at the
place of its focus. This is sometimes called a one-hole context.

The context can be expressed as a stack, called Contexts, and each frame,
Context, corresponds to the particular node with a hole. The stack ascends from
the focal node keeping its siblings, the siblings of its parent, etc., until it reaches
the root node. So the stack of contexts, essentially, reflects the track of the
movement inside the structure.

data Contexts (r :: ∗) (a :: ∗) (fam :: [∗])
(c :: ∗ → Constraint) where

CNil :: Contexts a a fam c
Ctxs :: (Generic a, In a fam, ZipperI r x a fam c)

⇒ Context fam a → Contexts r x fam c
→ Contexts r a fam c

The type parameters have the same meaning as for the Loc datatype. The
ZipperI constraint with the type x of the previous context frame indicates that
the constraint for the zipper holds after plugging the focus in the hole. Therefore,
all the properties can be proved by induction for the focus type when it moves
down in the tree adding new contexts onto the stack. The CNil constructor for

Handling Recursion in Generic Programming Using Closed Type Families 19

an empty context, with the r and a types being equal, forms the inductive basis
in that kind of proof.

Note that the type of the current focus is not reflected in the Contexts
datatype.

Type-Level Differentiation McBride [23] studies a relation between the one-
hole context definition and partial differentiation from calculus: he shows that
the type of the context for an arbitrary (regular) type can be derived mechan-
ically from that type by means of a list of differentiation rules that serve as
formulaic instructions for computing the type in type-level programming. Yaku-
shev et al. [30] then demonstrate that the method can be generalized for mutually
recursive datatypes. We adapt that technique to generics-sop, and now need a
few auxiliary type-level functions to implement the computation of the context
type. Those functions, defined recursively via type families, provide algebraic
operations for lists of types (which we regard as sums and products of types):
addition and multiplication. Specifically, we introduce addition .++ of two sums
of products (SOP) of types, multiplication .∗ of a SOP by a single type, and
multiplication .∗∗ of a SOP by a product of types. The definition of the latter
uses .∗ .

The addition operation just appends two type-level lists of lists (sums of
products), multiplication by a type adds the type to the head of each inner
list of the sum (here we see multiplication of a product and the distributive
property of multiplication over addition, just as in arithmetic of numbers), and
multiplication by a product appends the list to the head of each inner product
of the sum. We define multiplication by a type below. The definitions for the
other type-level operations are similar.

type family (.∗) (x :: ∗) (ys :: [[∗]]) :: [[∗]] where
x .∗ (ys ’ : yss) = (x ’ : ys) ’ : (x .∗ yss)

.∗ ’ [] = ’ []

Again, kind [∗] denotes products, and [[∗]] denotes sums (of products), so
the relation with arithmetic of numbers becomes more clear if one realizes that
an empty sum ’[] :: [[∗]] corresponds to 0, and an empty product ’[] :: [∗]
corresponds to 1.

Context Frame At this point, we can implement differentiation of a product
of types and, therefore, the computation of a context frame type6.

The definition of differentiation resembles its analogue from calculus, but it
is now generalized for the setting of families of datatypes:

type family DiffProd (fam :: [∗]) (xs :: [∗]) :: [[∗]] where
DiffProd ’ [] = ’ []
DiffProd fam ’ [x] = If (InFam x fam) ’ [’ []] ’ []

6 The actual definitions slightly differ from ones, presented in the following. We omit
some implementation details for simplicity.

20 Anna Bolotina and Artem Pelenitsyn

DiffProd fam (x ’ : xs) =
xs .∗∗ DiffProd fam ’ [x] .++ ’ [x] .∗∗ DiffProd fam xs

The differentiation of the single type reflected by a one-element list here results in
0 reflected by ’[] , if that is not in the family and hence is regarded as a constant.
Otherwise it results in 1 represented by the sum ’[’[]] . When differentiation
gives 1, it is actually the hole. We also use type-level If that returns its second
argument for ’True, and the third one otherwise. We do not give its definition
here, as it is straightforward.

The following completes the computation of the context type:

type family ToContext (fam :: [∗])
(code :: [[∗]]) :: [[∗]] where

ToContext ’ [] = ’ []
ToContext fam (xs ’ : xss) =

DiffProd fam xs .++ ToContext fam xss

The type family ToContext derives the type of the context of a datatype per-
forming differentiation of a sum on its code.

Finally, the type of a context frame representation is a type synonym:

type Context fam a = SOP I (ToContext fam (Code a))

5 Generic generic programming

In the previous sections, we have shown that many generic functions that treat
recursion can be defined, following one pattern, in the SOP view, which does
not employ a fixed point. Despite this, some generic functions can be defined
in a more elegant way, when using a fixed point view. Furthermore, there are
such ones, for which a fixed point view is essential. A prominent example of
this is generic pattern-matching [28]. It involves generic definitions of patterns
for datatypes, which extend their nodes with a metavariable environment. A
pattern type is defined as a sum of a datatype’s representation functor and a
type of variables, closed under a fixed point. This, therefore, cannot be builded
out of the SOP generic representation of a datatype.

Still, one can efficiently employ these views together in one program, tak-
ing advantages of the both. Combining the use of different generic encodings to
write programs is a known technique in generic programming. Magalhães and
Löh [22] investigate optimization of interaction between various generic views in
their work on generic generic programming. It proposes to automatically derive
generic representations of datatypes for numerous generic views, defining them
via conversions from one particular view. Specifically, these are translations be-
tween the analogues of the Generic class in different libraries. This obviates the
need of writing multiple blocks of code for their instances for one datatype, thus
optimizing generic programs.

regular [28] is a generic programming library, designed for generic rewriting,
that represents regular datatypes, using a fixed point view. Converting to this

Handling Recursion in Generic Programming Using Closed Type Families 21

view requires detecting recursion points in the datatype structure, so it can adopt
our approach. In this section, we define a conversion from the generics-sop view
to the regular one.

Encoding regular The regular library represents datatypes as sums of products
by means of the following single combinators (we omit the metadata combinator,
for simplicity):

newtype KR a r = KR a
newtype IR r = IR r
data UR r = UR

data (f :+:R g) r = LR (f r) | RR (g r)
data (f :×:R g) r = f r :×:R g r

infixr 6 :+:R
infixr 7 :×:R

It employs the type :+:R of binary sums and the type :×:R of binary products.
By nesting the sums, it chains constructors, and by nesting the products, it
chains fields within one constructor. The types KR, IR, and UR represent fields
of a constant type, recursive positions, and constructors without fields (called
“units”), respectively.

Using these representation types, regular encodes the underlying recursive
structure of datatypes as polynomial functors. For example, recall the type
AExpr:

data AExpr = EConst Int | EAdd AExpr AExpr | EMul AExpr AExpr

The corresponding polynomial functor is

type PFAExpr = KR Int :+:R IR :×:R IR :+:R IR :×:R IR

Datatypes can then be represented as their polynomial functors, closed under
a fixed point operator. Although, for practical tasks, it is sufficient to convert
only one layer of the datatype structure. regular provides a Regular class of
representable datatypes, with an associated type PF for a polynomial functor
and shallow conversion functions fromR and toR:

class Regular a where
type PF a :: ∗ → ∗
fromR :: a → PF a a
toR :: PF a a → a

The functions perform conversion between the datatype a and its generic repre-
sentation PF a a that stores elements of type a in the recursive positions.

Now, we turn to defining translation from generics-sop to regular. All the
conversion work is divided into two steps. First, we perform type-level transla-
tion of the SOP codes into the regular representation types. Then, we convert
representations at the level of terms.

22 Anna Bolotina and Artem Pelenitsyn

Type-level conversion The type-level conversion is done by type families:

type family RegS t (xss :: [[∗]]) :: ∗ → ∗ where
RegS t ’ [a] = RegP t a
RegS t (a ’ : b) = RegP t a :+:R RegS t b

type family RegP t (xs :: [∗]) :: ∗ → ∗ where
RegP t ’ [a] = RegEl t a
RegP t (a ’ : b) = RegEl t a :×:R RegP t b
RegP ’ [] = UR

type family RegEl t a :: ∗ → ∗ where
RegEl t t = IR

RegEl a = KR a

This machinery systematically turns n-ary sums of products to corresponding
nested binary sums of binary products. Empty products are being turned into
units UR, and recursive positions and constants are being wrapped into the
combinators IR and KR, respectively.

The regular representation type for the datatype a is then defined as

type Reg a = RegS a (Code a) a

Term-level conversion The value conversion of representations is handled by
the type classes ConvS, ConvP, and ConvEl:

class ConvS (s :: Bool) a (xss :: [[∗]]) where
toRegS :: NS (NP I) xss → RegS a xss a

class ConvP (s :: Bool) a (xs :: [∗]) where
toRegP :: NP I xs → RegP a xs a

class ConvEl (eq :: Bool) a x where
toRegEl :: x → RegEl a x a

The logical type parameter s in the first two declarations is used to distinguish
the cases, when the lists xss and xs consist of a single element.

We only show the ConvEl instances that do work on managing recursion:

instance ConvEl ’True t t where
toRegEl x = IR x

instance RegEl t a ∼ KR a ⇒ ConvEl ’False t a where
toRegEl x = KR x

The second case requires the context, witnessing that RegEl t a results in KR a,
because RegEl t a is less specific than RegEl t t, hence may be overlapped.

The conversion function from SOP to regular is defined as

toReg :: ConvS a (Code a) ⇒ SOP I (Code a) → Reg a
toReg = toRegS . unSOP

Handling Recursion in Generic Programming Using Closed Type Families 23

Finally, we use this function to give an instance of Regular for all instances
of SOP’s Generic:

instance (Generic a, ConvS a (Code a)) ⇒ Regular a where
type PF a = RegS a (Code a)
fromR = toReg . from

6 Discussion

In this section, we give a discussion of some concerns relating to the scope and
user-friendliness of the introduced no-overlap technique for handling recursion.

Polymorphic recursion The approach, described in this paper, is applicable to
a range of datatypes that are monomorphically recursive. Any of those datatypes
has the same type parameters in the left-hand side of its definition and at its
recursion points (e.g. Tree a from Section 2.1). We can go further and proceed
with a solution for generic functions, which covers some datatypes whose type
parameters in each recursive knot may differ from those in its parent. It turns
out, as we will show below, that the solution allows for datatypes with a “simple”
form of polymorphic recursion, but fails to work for nested datatypes [2].

Assume we have a polymorphically recursive datatype PolyRec a defined in
terms of a type family Poly:

data PolyRec a = Tail a | Rec a (PolyRec (Poly a))

type family Poly a where
Poly Bool = Char
Poly Char = Bool
Poly a = a

For managing polymorphic recursion in this datatype, we can write an ana-
logue of the Equal type family from Section 3, which ignores type parameters
when checking two polymorphic types. Since any datatype with type parame-
ters f a b c . . . has kind ∗ → (∗ → (∗ → . . .)), a PolyEq type family can be
defined thus:

type family PolyEq (a :: k) (x :: k) :: Bool where
PolyEq (f a) (g b) = PolyEq f g
PolyEq a a = ’True
PolyEq = ’False

The function gshow from Section 3.2 can be reimplemented by using this type
family instead of Equal. The only piece of its definition must be changed as well
in order to recursively invoke the function each time with a new type (with the
proper change in the CaseRecShow definition):

instance Show a ⇒ CaseShow ’False a where
caseShow’ = show

24 Anna Bolotina and Artem Pelenitsyn

instance GShow a ⇒ CaseShow ’True a where
caseShow’ = gshow

Unfortunately, this approach, albeit working well for datatypes defined like
PolyRec a, becomes unsuitable for nested datatypes, such as one below:

data Nested a = Epsilon | Nest a (Nested [a])

The culprit is the constraint All2 (CaseRecShow a) (Code a) that now turns
out to be a root of nonterminating computation of the GShow constraint for
[a] , [[a]] , and so on ad infinitum. Similarly, the approach fails for functions
that are nonrecursive itself, but meant to be used recursively, such as gcompos
from Section 3.3, as it induces an infinite constraint at a call site of the generic
function.

Still, one can think of problems where a generic operation uses the recur-
sive structure of data, but has no recursive calls—and, therefore, can tolerate
nested datatypes. An example of this kind of problems is “generic generic pro-
gramming” (see Section 5). In our setting, it is possible to define a translation
from generics-sop to another generic view that explicitly encodes recursive po-
sitions and supports polymorphic recursion—for example, generic-deriving [20].
This needs only to detect recursion points, because this library provides shallow
conversion functions.

Usability and error-reporting The shown no-overlap technique may involve
a lot of multiple constraints on generic functions. We tend to abbreviate them
with type aliases. Although convenient when reading and writing code, one may
encounter a leak in abstraction by making a mistake in client code. In this case,
GHC sometimes produces an embarrassingly long error message where multiple
underlying constraints are displayed. We currently investigate the TypeError re-
cent mechanism of GHC which allows for user-defined error messages, specifically
targeted for type level-heavy computations.

7 Related work

There are many works that contribute to the datatype-generic programming.
Rodriguez et al. [26] and Magalhães and Löh [21] review a number of existing
approaches and provide their detailed comparison in various aspects. There are
several generic views that use certain forms of the fixed point operator to express
recursion in a datatype structure [28, 30, 13, 18]. And there are a number of
approaches that do not make use of fixed points [4, 20], but explicitly encode
recursion in the datatype representation. The SOP view [7], which we use to
demonstrate our technique, is an approach to generic programming that does
not reflect recursive positions in the generic representation of a datatype. This
approach uses heterogeneous lists of types to encode sums and products in the
generic representation.

The idea similar to SOP has been proposed by Kiselyov et al. [15] in their
HList library for strongly typed heterogeneous collections. In the paper, the

Handling Recursion in Generic Programming Using Closed Type Families 25

authors also discuss problems connected with overlap, which they use for access
operations. Another Haskell extension, functional dependencies, is applied to
restrict overlap by introducing a class for type equality there, which resembles
our solution.

Morris and Jones [25] introduce the type-class system ilab, based on the
Haskell 98 class system, with a new feature called “instance chains”. This enables
one to control overlap by using an explicit syntax in instance declarations. The
approach resembles if-else chains. But the use of instance chains and local use of
overlap leave code error-prone as a consequence of type class openness. Closed
type families [9] were recently introduced in Haskell to solve the overlap problem.

Several works show how to define the Zipper [12] generically for regular [11,
23] and mutually recursive [30] types using fixed-point generic views. Adams [1]
defines a generic zipper for heterogeneous types: a different kind of zipper that
can traverse knots of various types, so it does not use the recursive structure.

8 Conclusion

Defining generic functions, which consider recursion points, is easy within generic
views that are explicit about recursion in the datatype representation. Not so
much otherwise. Although, there are some approaches that address the problem
by means of global or local overlaps. We have developed the technique that allows
one to define generic functions that treat recursion without its explicit encoding
and without overlap.

We have demonstrated that the method suits for advanced recursive schemes,
such as the generic zipper interface. Also, it supports families of mutually recur-
sive datatypes.

Arguably, it is still easier to treat recursion when “explicit” encoding is used.
On the other hand, we believe, once the problem of handling recursion is shown
to be manageable, new generic universes shall emerge, not worrying about the
recursion support, but rather focusing on other generic programming problems.

Acknowledgments

We are thankful to Andres Löh for his helpful recommendations and comments
on the paper. We address some insightful questions and suggestions from partic-
ipants of the TFP symposium, to whom we are deeply grateful. We thank Julia
Belyakova, who helped to proof-read certain parts of the paper, and the partici-
pants of the Seminar on Programming Languages and Compilers at I.I. Vorovich
Institute of Mathematics, Mechanics, and Computer Science (Southern Federal
University, Russia), where we presented partial results of the work and got valu-
able feedback.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 695412).

26 Anna Bolotina and Artem Pelenitsyn

References

1. Adams, M.D.: Scrap your zippers: A generic zipper for heterogeneous types.
In: Proceedings of the 6th ACM SIGPLAN Workshop on Generic Pro-
gramming. pp. 13–24. WGP ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1863495.1863499

2. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) Mathematics of
Program Construction. pp. 52–67. Springer Berlin Heidelberg, Berlin, Heidelberg
(1998)

3. Bringert, B., Ranta, A.: A pattern for almost compositional functions. In: Pro-
ceedings of the Eleventh ACM SIGPLAN International Conference on Func-
tional Programming. pp. 216–226. ICFP ’06, ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1159803.1159834

4. Chakravarty, M.M.T., Ditu, G.C., Leshchinskiy, R.: Instant generics: Fast and easy
(2009), http://www.cse.unsw.edu.au/∼chak/papers/CDL09.html

5. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 90–104. Haskell
’02, ACM, New York, NY, USA (2002). https://doi.org/10.1145/581690.581698

6. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random
testing of haskell programs. SIGPLAN Not. 46(4), 53–64 (May 2011).
https://doi.org/10.1145/1988042.1988046

7. De Vries, E., Löh, A.: True sums of products. In: Proceedings of the 10th ACM
SIGPLAN Workshop on Generic Programming. pp. 83–94. WGP ’14, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2633628.2633634

8. De Vries, E., Löh, A.: generics-sop: Generic programming using true sums of prod-
ucts (2018), http://hackage.haskell.org/package/generics-sop

9. Eisenberg, R.A., Vytiniotis, D., Peyton Jones, S., Weirich, S.: Closed type families
with overlapping equations. In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 671–683. POPL ’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2535838.2535856

10. Safe haskell & overlapping instances—ghc (2015), https://ghc.haskell.org/trac/
ghc/wiki/SafeHaskell/NewOverlappingInstances

11. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Science of Computer
Programming 51(1), 117–151 (2004). https://doi.org/10.1016/j.scico.2003.07.001,
mathematics of Program Construction (MPC 2002)

12. Huet, G.: The zipper. Journal of Functional Programming 7(5), 549–554 (1997)
13. Jansson, P., Jeuring, J.: Polyp—a polytypic programming language extension. In:

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 470–482. POPL ’97, ACM, New York, NY, USA
(1997). https://doi.org/10.1145/263699.263763

14. Kiselyov, O.: Type equalities, disequalities and obsoleting of overlapping instances
(2012), http://okmij.org/ftp/Haskell/typeEQ.html

15. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous
collections. In: Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell. pp. 96–107. Haskell ’04, ACM, New York, NY, USA (2004).
https://doi.org/10.1145/1017472.1017488

16. Löh, A.: Exploring Generic Haskell. Ph.D. thesis, Utrecht University (2004)
17. Löh, A.: Applying type-level and generic programming in haskell (2018), https://

github.com/kosmikus/SSGEP/blob/master/LectureNotes.pdf, summer School on
Generic and Effectful Programming (SSGEP 2015)

Handling Recursion in Generic Programming Using Closed Type Families 27

18. Löh, A., Magalhães, J.P.: Generic programming with indexed functors. In:
Proceedings of the Seventh ACM SIGPLAN Workshop on Generic Pro-
gramming. pp. 1–12. WGP ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2036918.2036920

19. Magalhães, J.P.: Less Is More: Generic Programming Theory and Practice. Ph.D.
thesis, Utrecht University (2012)

20. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mech-
anism for haskell. In: Proceedings of the Third ACM Haskell Symposium
on Haskell. pp. 37–48. Haskell ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1863523.1863529

21. Magalhães, J.P., Löh, A.: A formal comparison of approaches to datatype-generic
programming. In: Proceedings Fourth Workshop on Mathematically Structured
Functional Programming, MSFP@ETAPS 2012, Tallinn, Estonia, 25 March 2012.
pp. 50–67 (2012). https://doi.org/10.4204/EPTCS.76.6

22. Magalhães, J.P., Löh, A.: Generic generic programming. In: Flatt, M., Guo, H.F.
(eds.) Practical Aspects of Declarative Languages. pp. 216–231. Springer Interna-
tional Publishing, Cham (2014)

23. McBride, C.: The derivative of a regular type is its type of one-hole contexts (2001),
http://strictlypositive.org/diff.pdf, unpublished manuscript

24. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Programming
Languages and Computer Architecture. pp. 124–144. Springer Berlin Heidelberg,
Berlin, Heidelberg (1991)

25. Morris, J.G., Jones, M.P.: Instance chains: Type class programming without over-
lapping instances. In: Proceedings of the 15th ACM SIGPLAN International Con-
ference on Functional Programming. pp. 375–386. ICFP ’10, ACM, New York, NY,
USA (2010). https://doi.org/10.1145/1863543.1863596

26. Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira, B.C.d.S.:
Comparing libraries for generic programming in haskell. In: Proceedings of the
First ACM SIGPLAN Symposium on Haskell. pp. 111–122. Haskell ’08, ACM,
New York, NY, USA (2008). https://doi.org/10.1145/1411286.1411301

27. basic-sop: Basic examples and functions for generics-sop (2017), https://hackage.
haskell.org/package/basic-sop

28. Van Noort, T., Rodriguez, A., Holdermans, S., Jeuring, J., Heeren, B.: A
lightweight approach to datatype-generic rewriting. In: Proceedings of the ACM
SIGPLAN Workshop on Generic Programming. pp. 13–24. WGP ’08, ACM, New
York, NY, USA (2008). https://doi.org/10.1145/1411318.1411321

29. Weirich, S.: Replib: A library for derivable type classes. In: Proceedings of the 2006
ACM SIGPLAN Workshop on Haskell. pp. 1–12. Haskell ’06, ACM, New York, NY,
USA (2006). https://doi.org/10.1145/1159842.1159844

30. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic program-
ming with fixed points for mutually recursive datatypes. In: Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 233–244. ICFP ’09, ACM, New York, NY, USA (2009).
https://doi.org/10.1145/1596550.1596585

31. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Work-
shop on Types in Language Design and Implementation. pp. 53–66. TLDI ’12,
ACM, New York, NY, USA (2012). https://doi.org/10.1145/2103786.2103795

